
Eur. Phys. J. B 1, 233–244 (1998) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
Springer-Verlag 1998

Adsorption and spreading of polymers at plane interfaces;
theory and molecular dynamics simulations

M.C.P. van Eijk1,a, M.A. Cohen Stuart1, S. Rovillard2 and J. De Coninck2

1 Wageningen Agricultural University, Laboratory for Physical Chemistry and Colloid Science, Dreijenplein 6,
6703 HB Wageningen, The Netherlands

2 University of Mons-Hainaut, Research Centre for Molecular Modelling, 20 Place du Parc, 7000 Mons, Belgium

Received: 18 July 1997 / Received in final form: 27 October 1997 / Accepted: 6 November 1997

Abstract. Nonequilibrium processes play a key role in the adsorption kinetics of macromolecules. It is
expected that the competition between transport of polymer towards an interface and its subsequent
spreading has a significant influence on the adsorbed amount. An increase of the transport rate can lead
to an increase of the adsorbed amount, especially when the polymer has too little time to spread at the
interface. In this study we present both molecular dynamics simulations and analytical calculations to
describe some aspects of the adsorption kinetics. From MD simulations on a poly(ethylene oxide) chain
in vacuum near a graphite surface, we conclude that the spreading process can, in first approximation,
be described by either a simple exponential function or by first-order reaction kinetics. Combining these
spreading models with the transport equations for two different geometries (stagnation-point flow and
overflowing cylinder) we are able to derive analytical equations for the adsorption kinetics of polymers at
solid–liquid and at liquid–fluid interfaces.

PACS. 68.10.Jy Kinetics (evaporation, adsorption, condensation, catlysis, etc.) – 68.45.Da Adsorption
and desorption kinetics; evaporation and condensation – 36.20.Ey Conformation (statistics and dynamics)

1 Introduction

The adsorption process of polymers frequently involves
long-lived nonequilibrium states. The equilibrium struc-
ture of a polymer layer, as described by numerous statis-
tical theories (see, e.g., Ref. [1]), is insufficient to describe
various effects observed in adsorption kinetics and statics.
Several experimental studies report significant nonequilib-
rium processes in polymer adsorption [2–5]. One of the im-
portant parameters in the surface relaxation is the
strength of the polymer–surface interaction. If the interac-
tion energy of a single polymer segment with the interface
exceeds 1kT , then thermal fluctuations are not able to re-
lease parts of the polymer easily, which is necessary for
its spreading. Polymers adsorbed from organic solvents
on mineral surfaces interact by strong hydrogen bonds,
and are therefore likely to form long-living nonequilibrium
states.

Such a system was studied by Schneider et al. [4]. From
their adsorption experiments with poly(methyl methacry-
late) on silica from CCl4 they concluded that as long as the
surface coverage is low, arriving polymers will flatten and
a relatively large number of polymer–surface contacts will
be achieved, whereas molecules arriving at a later stage
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in the adsorption process will adsorb with a low bound
fraction. This nonequilibrium situation turned out to be
quite stable. This observation implies that polymer flux
towards an interface together with the time dependent
adsorbed amount Γ (t) should have an effect on the state
in which a polymer adsorbs. A slow spreading process will
initially lead to a relatively small area per molecule, and
thus to a relatively high adsorbed amount. Subsequent
relaxation by spreading leads to an increased area per
molecule, which is only possible when it is accompanied by
a desorption process. This delayed spreading will lead to a
decrease of Γ (t). In this scenario a maximum (overshoot)
in the adsorption curve will be found.

Overshoots have indeed been observed in a number
of cases, both for proteins [6,5] and for synthetic poly-
mers [2–4]. In addition, spreading plays a role in polymer–
polymer exchange processes [7]. As yet, very little is known
about the factors controlling the rate of the spreading pro-
cess. Moreover, apart from a scaling calculation in a recent
paper by Semenov and Joanny [8], the consequences of
spreading for the overall adsorption kinetics have hardly
been investigated.

In this paper two cases are considered: adsorption from
flowing solution onto a solid surface, and adsorption
onto an expanding liquid-gas or liquid–liquid interface.
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In the latter case, the rate of expansion of the interface en-
ters the problem as a additional timescale. Pefferkorn and
Elaissari [2] have introduced the growing disk model. In
this model, each molecule is described as a disk with initial
radius S(0) that arrives at the interface. Immediately af-
ter attachment, the disk starts to grow exponentially with
a growth rate characterized by a spreading time τ and a
limiting size S(eq). We already successfully applied an an-
alytical version of this model to the adsorption of savinase
on SiO2 [5]. It should be important to see how realistic the
growing disk model is. To this end we carried out molecu-
lar dynamics simulations on individual chains near a solid
surface. We divided this study into two parts. In the first
one, we introduce the relevant transport and spreading
processes and also explore the latter at its molecular level.
Secondly, we present analytical calculations based on the
growing disk approach together with the two geometries
in order to describe adsorption processes where spread-
ing occurs on experimental timescales. Special attention
is paid to two different spreading models.

2 Transport and spreading

The adsorption kinetics of polymers can conveniently be
subdivided into three stages. Firstly, a polymer has to
reach the interface by, e.g., convection or diffusion. For
this, the fluid dynamics of the studied system are of ma-
jor importance. Secondly, an attachment of the polymer
to the interface has to occur. Here several kinds of interac-
tions may play a role, such as electrostatic or hydrophobic
ones. Finally, a spreading of the molecule at the interface
will occur. This spreading process will be governed by the
gain or loss in the number of interaction sites between
polymer and interface. Especially the characteristic times
of the first and the last step in the adsorption process are
of great importance for the final kinetics. Pefferkorn and
Elaissari [2] applied a “growing disk” model to the adsorp-
tion kinetics of polyelectrolytes at a solid surface. They
used numerical calculations to arrive at their final results.
Here, we will discuss an analytical version of a comparable
model, but we will also introduce a more general n-state
model to address adsorption kinetics.

In the following, we will present the transport process
for the case of two widely used experimental setups. Sub-
sequently we will concentrate on two spreading models
that will be used in the description of adsorption kinetics
of macromolecules. We have applied molecular dynamics
simulations to elucidate the spreading behaviour. These
simulations justify our spreading models.

2.1 Transport to the interface

The first step in trying to describe the adsorption kinet-
ics of polymers is deriving expressions for the transport of
the molecules to the interface. In order to keep the equa-
tions relatively simple, it is necessary to work with well-
defined geometries for which fluid-dynamical relations can

be derived easily. In the following, we will first discuss ad-
sorption from solution to a solid surface in a stagnation-
point flow (for a rigourous fluid-dynamical approach see
Ref. [9]). This setup gained much interest in reflectometric
studies on polymer adsorption. A description of this tech-
nique in combination with a stagnation-point flow is given
by Dijt et al. [10,11]. Another widely used setup which
will be treated is the overflowing cylinder. This geometry
is used for studying the adsorption of, e.g., proteins at an
air-water interface. The fluid dynamics of this geometry
are described by Bergink-Martens et al. [12].

2.1.1 Stagnation-point flow

Figure 1 shows a schematic representation of a stagnation-
point flow. The axial symmetry in the problem makes the
use of cylindrical coordinates obvious. The radius of the
tube is denoted by R and the distance between the outlet
of the tube and the plane is given by h. We choose the
stagnation-point (i.e., where the fluid velocity v = 0) as
the origin of our coordinate system, where r denotes the
radial direction, z the direction along the symmetry axis
into the fluid, and φ the rotation around this axis. Da̧broś
and Van de Ven [9] derived the following expressions for
the three components of the velocity near the stagnation
point for an incompressible Newtonian fluid (in dimen-
sionless form):

vr = α̂zr (2.1a)

vz = −α̂z2 (2.1b)

vφ = 0, (2.1c)

where α̂ is a dimensionless flow intensity parameter de-
pending on the Reynolds number Re and the ratio h/R.
The distances r and z are made dimensionless with re-
spect to R, and the velocity v with respect to the average
fluid velocity U at z = h/R. We will use this flow field
near the stagnation point for the solution of the convec-
tive diffusion equations for the transport of polymer to
the interface. As flow intensity parameter we will use α
which is defined as α = α̂U/R2, retaining the appropriate
dimensions for the variables.

r

z

R

h

Fig. 1. Geometry of a stagnation-point flow setup. Fluid moves
along the axes of symmetry in a tube of radius R and enters
between two planes distance h apart. The stagnation point is
the origin of a cylindrical coordinate system r, z, and φ (not
shown).
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Using conservation of mass, we write for the transport
of solute i

∂ci

∂t
= −∇ · Ji, (2.2)

where Ji is the net flux and ci the concentration of the
solute (polymer). In the mentioned stagnation-point flow,
diffusion and convection determine the flux. Due to the
axial symmetry of the system only the r and z-components
of the flux are non-zero and are given by

Jri = civr −Di
∂ci

∂r
, (2.3a)

Jzi = civz −Di
∂ci

∂z
, (2.3b)

where Di is the diffusion coefficient for component i. It
must be noted that these equations are valid only under
the assumption that hydrodynamic interactions are can-
celled by the specific interactions between the interface
and the solute [13] (Smoluchowski-Levich approximation).
If we neglect radial diffusion (i.e., Di∂ci/∂r� civr) then
substitution of these equations in equation (2.2), where we
take ∇·v = 0 because of the incompressibility constraint,
gives for the stationary state

∂

r∂r
(rcivr) +

∂civz

∂z
= Di

∂2ci

∂z2
· (2.4)

Substituting equation (2.1) into this equation gives us

αrz
∂ci

∂r
− αz2 ∂ci

∂z
= Di

∂2ci

∂z2
· (2.5)

Symmetry implies that ∂ci/∂r=0 at the stagnation point,
thus for r = 0 we rewrite equation (2.5) as the linear
differential equation

−αz2∂ci

∂z
= Di

∂2ci

∂z2
· (2.6)

We are now able to derive an analytic expression for
the flux Jzi at the stagnation point. The solution of equa-
tion (2.6) is

∂ci

∂z
= Kie

−αz
3

3Di . (2.7)

The constant Ki can be found by noticing that ci must
be equal to the bulk concentration far away from the in-
terface and c0i to that in the vicinity of the interface. This
subsurface concentration can in principle be found by as-
suming local equilibrium, implying a direct relationship
between the adsorbed amount and c0i . We write∫ ∞

0

dz
∂ci

∂z
= cbi − c

0
i , (2.8)

from which we can calculate

Ki =
(cbi − c

0
i )

Γ
(

1
3

) (
9α

Di

)1/3

, (2.9)

where Γ(x) =
∫∞

0
dt e−ttx−1 denotes the Gamma func-

tion. The flux of polymer i towards the stagnation point
is now given by

Jzi(0) = Di
∂ci

∂z

∣∣∣∣
z=0

=
(cbi − c

0
i )D

2/3
i (9α)1/3

Γ
(

1
3

) .

(2.10)

We will also use the limiting flux J0i, which is defined as
the flux Jzi(0) for the situation where c0i = 0.

2.1.2 Overflowing cylinder

A schematic representation of the overflowing cylinder is
given in Figure 2. In this setup, again, a stagnation point
exists. We choose this as the origin of our cylindrical coor-
dinate system. In contrast to the stagnation-point flow dis-
cussed above, we are now dealing with an expanding inter-
face, which introduces a new timescale. Bergink-Martens
et al. [12] showed that if r � R, the relative expansion
rate of the surface ϑ = dA/(Adt) is constant. The fluid
velocities near the stagnation point are given by

vr =
ϑr

2
, (2.11a)

vz = −ϑz, (2.11b)

vφ = 0. (2.11c)

The equations that describe the flux have already been
discussed; again equations (2.2–2.4) can be used to ob-
tain an expression for the flux towards the interface in
the vicinity of the stagnation point. We substitute equa-
tion (2.11) into equation (2.4) to arrive at

ϑr

2

∂ci

∂r
− ϑz

∂ci

∂z
= Di

∂2ci

∂z2
. (2.12)

Symmetry implies that ∂ci/∂r is zero at the stagnation
point and negligible in its neighbourhood. Equation (2.12)

r

z
hd

L

R

Fig. 2. Geometry of an overflowing cylinder. Fluid moves up-
wards in a cylinder of radius R, which will overflow, giving rise
to a free expanding surface. The height L of the falling film
together with the flow rate Q determine the relative expansion
rate ϑ = dA/(Adt). Again, the stagnation point is the origin
of a cylindrical coordinate system r, z, and φ (not shown).
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then simplifies to

−ϑz
∂ci

∂z
= Di

∂2ci

∂z2
, (2.13)

which is easily solved to obtain

∂ci

∂z
= Kie

− ϑz
2

2Di . (2.14)

We use the boundary condition given by equation (2.8)
and obtain an expression for the integration constant

Ki = (cbi − c
0
i )

(
2ϑ

Diπ

)12

. (2.15)

With this equation we calculate the flux of solute i towards
the interface at the stagnation point

Jzi(0) = Di
∂ci

∂z

∣∣∣∣
z=0

= (cbi − c
0
i )

(
2ϑDi

π

)1/2

.

(2.16)

Again, J0i will be used to express the limiting flux for c0i =
0. The main difference of the flux between a stagnation-
point flow and an overflowing cylinder setup is the dif-

ferent dependence on the diffusion coefficient (D
2/3
i vs.

D
1/2
i ).

2.2 Spreading models

We are now able to describe the transport of a polymer
towards an interface, but are still left with the problem of
rearrangements after attachment. We will model this pro-
cess as a spreading of polymer molecules at the interface.
First, we will describe the rather crude, but useful, grow-
ing disk model, which was also used by Pefferkorn and
Elaissari to model polymer adsorption kinetics [2]. Subse-
quently, we will discuss a simple n-step model based on
first-order reaction kinetics.

In the growing disk model we assume that a polymer
attaches to the interface in a coil conformation (C) com-
parable to that in solution. After attachment the polymer
will spread to its final conformation, denoted by S. The
process is then given by

C
growing disk
−−−−−−−−→ S. (2.17)

We take a simple exponential function for this spread-
ing process, such that the area occupied by a polymer
attached at time t′ is given by

s(t− t′) = sc + (ss − sc)
(

1− e−
t−t′

τs

)
, (2.18)

where sc and ss are the initial and final occupied area of
the molecule per unit mass, respectively.

A discrete form of the growing disk model is obtained
if we assume that the polymer can be present at the in-
terface in n+1 different conformations. Schematically the
spreading process can then be depicted as

P0

k+1
−−→
←−−
k−1

P1 · · · Pn−1

k+n
−−→
←−−
k−n

Pn, (2.19)

where k+i and k−i are reaction rate constants for the sur-
face processes. The areas per unit mass for the n+1 states
are denoted by si. We can simply apply first-order reaction
kinetics to calculate the adsorbed amounts of the different
conformations. There also exists a direct relation between
the adsorbed amounts and the surface coverage θ:

θ =
n∑
i=0

Γisi. (2.20)

In practice it is useful to use the one-step version of this
model, defining kf ≡ k+1 and kb ≡ k−1 as reaction rate
constants, and take sc and ss as the area of the polymer
in the initial and final state, respectively.

2.3 Molecular dynamics

Before proceeding to an analytical description of the ad-
sorption kinetics of spreading polymers, we would like
to give a possible justification on a molecular level for
the introduced spreading models. To this end, we carried
out some molecular dynamics simulation on a fairly sim-
ple model system, from which we are able to extract the
spreading behaviour near a solid surface.

2.3.1 Model system and procedure

One of the aspects to keep in mind when trying to simu-
late the spreading of a polymer near an interface, is the
accessible timescale. It should be clear that we should pick
a model system where spreading will be fast, and as a
consequence we have to limit ourselves to relatively small
flexible molecules at a very low density.

The systems we studied all consist of a single chain of
poly(ethylene oxide) (PEO) with protons as end groups
near a graphite surface. We will denote these polymers
as EOn, where n is the number of ethylene oxide groups.
The graphite surface is a single layer consisting of 1881
C-atoms. All simulations on the PEO system were carried
out using the commercially available software Insight II
4.0.0 from MSI together with the Discover 96.0/4.0.0 mod-
ule. To get reliable results on the spreading behaviour of
PEO, each simulation was build up in four stages. Before
going in these details, we first mention some characteris-
tics of the MD simulation.

The microscopic state of a system of N atoms can be
described in terms of the positions (ri) and momenta (pi)
of the contained atoms. To characterize the system we will
use a convenient condensed notation

r = (r1, r2, . . . , rN ) (2.21a)

p = (p1,p2, . . . ,pN ). (2.21b)
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As is common, we write the Hamiltonian of the system as
a sum of potential and kinetic energy terms:

H(r,p) = V(r) +K(p). (2.22)

We use the consistent valence force field from the Dis-
cover module without cross terms arriving at the follow-
ing expression for the potential energy contribution to the
Hamiltonian:

V(r) =
∑
i

kbi
(
bi − b

0
i

)2
+
∑
i

kθi
(
θi − θ

0
i

)2
+
∑
i

kφi
(
1 + cos

(
nφi − φ

0
i

))
+
∑
i

kχi
(
1 + cos

(
nχi − χ

0
i

))
+
∑
ij

((
Aij

rij

)12

−

(
Bij

rij

)6
)

+
∑
ij

qiqj

4πεrij
, (2.23)

where bi is a bond length, θi a bond angle, φi a torsion an-
gle, χi an out-of-plane angle to correct for torsional bonds
φi ≈ π in the case of π-bonds (cis-conformation), and qi
the charge of an atom. The distance between atom i and
j is denoted by rij . All other symbols denote constants
depending on the kind of concerned atoms, which define
the force field. The Lennard-Jones potential is calculated
only to a cut-off radius rij = 2.5 nm, and the electrostatic
contribution to a cut-off radius rij = 0.95 nm.

In our MD simulations we imply effectively no bound-
ary conditions, allowing the polymer to move freely in vac-
uum. At the beginning, the system is arranged so that the
centre of mass (Rcm) of the PEO molecule is at a distance
of 5 nm from the graphite sheet plane. We choose the ori-
gin of a Cartesian coordinate system to be in the graphite
plane and the z-direction perpendicular to it. To save com-
putational time, the carbon atoms in the graphite layer are
held fixed to their initial positions during all steps of the
simulation. However, they will contribute to the non-bond
terms of the potential energy in their interactions with the
PEO.

Having situated the PEO molecule far from the sur-
face we perform a potential energy minimization to equi-
librate the polymer structure. For this purpose we use
a cascade of two minimisers, starting with the steepest-
descent method, followed by the conjugate-gradient one.
The steepest-descent algorithm is used to make sure that
any severe strain within the polymer chain is removed.
We apply this method until the gradient of the
potential energy with respect to the atom coordinates
|∇rV(r)| ≤ 4.184 × 1016 J mol−1m−1. We then pro-
ceed with the conjugate-gradient method until
|∇rV(r)| ≤ 4.184×1010 J mol−1m−1. After this minimiza-
tion step the PEO molecule has adopted a structure close
to a local potential energy minimum.

In the presence of a fully minimized configuration of
PEO, we can start the molecular dynamics simulation
with a target temperature T = 298 K in a NV T ensem-
ble. To force the polymer towards the surface, we apply

a constraint to the centre of mass of the PEO. So, in the
potential energy an extra term

vcm = k(zcm − z0)2 (2.24)

occurs, with k=2.092×1027 J mol−1m−1 and z0 =2.5 nm.
This quadratic potential is used during the first 10000
steps of 1 fs of our simulation. The polymer is than close
enough to the surface to start our final step in the MD
simulation.

Before the adsorption and spreading stage, we replace
the previously introduced quadratic constrained by a flat-
bottomed constraint

vcm =


k(zcm − z0)2 for zcm < z0,

0 for z0 ≤ zcm ≤ z1,

k(zcm − z1)2 for zcm > z1,

(2.25)

where z0 = 0 nm, z1 = 2.5 nm, and k = 4.184 × 1012 J
mol−1m−1. This restraint prevents the PEO from moving
too far from the graphite surface without influencing its
behaviour in the vicinity of the surface. We run the MD
simulation over 60000 time steps of 1 fs. Every 10 fs all
atom coordinates are stored for post-processing.

In our simulations we varied the chain length (n=
10, 30, 50) and the interaction between PEO and the gra-
phite sheet. The latter is achieved by scaling the Lennard-
Jones potential between polymer atoms and graphite at-
oms by a factor γ.

From the stored atom positions of PEO, taken from r
every 10 fs, we calculated a number of relevant quantities
in order to visualize the adsorption and spreading process.
The position of the polymer is reflected in the position of
the centre of mass which is defined as

Rcm ≡

Np∑
i=1

miri

Np∑
i=1

mi

, (2.26)

where mi is the mass of atom i and Np is the number of
atoms in the PEO molecule. This Rcm can subsequently
be used to calculate a mean distance of the PEO molecule
to the surface

zcm = Rcm · ez, (2.27)

where ez is the unit vector in the z-direction of the Car-
tesian coordinate system. The spreading process can be
monitored by following the evolution of the parallel radius
of gyration of PEO, defined as

R2
g‖≡

Np∑
i=1

mi

(
(ri −Rcm)

2 − ((ri −Rcm) · ez)
2
)

Np∑
i=1

mi

. (2.28)
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Fig. 3. Fraction xi of the atoms of EO30 in a 0.5 nm thick
layer i (i = 1, 2, 3, 4, 5) parallel to the surface. The layers are
numbered from the surface.

Furthermore, the distribution of the PEO atoms perpen-
dicular to the surface is calculated. To this end, the num-
ber of atoms Ni in layer i of 0.5 nm in thickness, parallel
to the surface, are counted for 5 layers. The fraction of
atoms in layer i is then denoted by xi = Ni/Np.

2.3.2 MD Results

As an example of the observed effects for the adsorption
and spreading of PEO on a graphite surface, we will il-
lustrate here the results obtained for EO30 with γ = 3.
Similar results were also found for the other studied sys-
tems. At the start of the MD simulation the PEO is ap-
proximately 2.5 nm from the surface, and has to approach
it, before a polymer segment will be in contact with the
graphite. How this happens is depicted in Figure 3, where
the fraction of the EO30 that is present in a layer at a
certain distance from the surface is plotted as function of
time. Clearly, the polymer starts from layer 5 (2.0–2.5 nm
from the surface), and subsequently adsorbs and mainly
ends up in layers 1 and 2. This implies a rather flat confor-
mation of the molecule in the adsorbed state. This obser-
vation confirms the existence of a spreading process. The
approach towards the surface can also be nicely monitored
by the time dependence of the vertical position of the cen-
tre of mass as defined by equation (2.27), which is shown

0

1

2

0 10 20 30

zcm / nm

t / ps

Fig. 4. Approach of the centre of mass of EO30 to the graphite
surface in the final stage of the MD simulation.
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Fig. 5. R2
g‖ as a measure for the occupied area of EO30 as a

function of time. Also shown is a fit of the data to the function
R2

g‖ = R2
g0 + σ

(
1− exp

(
− t−t0

τ

))
.

in Figure 4. From this plot, however, we are not able to
draw satisfying conclusions about the time constant of the
spreading process. A more suitable quantity for this pur-
pose is the radius of gyration of the PEO parallel to the
surface.

Figure 5 shows the time evolution of R2
g‖ for EO30.

The fact that the parallel size of the PEO decreases in
the beginning of the simulation is caused by the fact that
at that point the polymer is pulled towards the surface
after release of the constraint in the potential energy from
equation (2.24). The spreading of the polymer is clearly
seen, and in order to compare it to our introduced spread-
ing models in the previous section (Eq. (2.18)) we fitted
the data to the following equation:

R2
g‖ = R2

g0 + σ

(
1− exp

(
−
t− t0
τ

))
, (2.29)

with R2
g0 = 0.316 nm2, σ = 0.334 nm2, t0 = 2.82 ps, and

τ = 5.18 ps. In this fit t0 and R2
g0 are taken from the data

by hand. Comparison of this fit with the data suggests that
a simple exponential function is a good first approximation
for the spreading of a flexible polymer near an interface.
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One should bear in mind that the presented simulation
only serves as an example, and that similar behaviour was
observed for the other simulation runs. It should be evi-
dent that the presence of more polymers will complicate
the situation. However, as long as the surface coverage
is relatively low the single polymer approach serves as a
good first approximation. For now we will use this crude
model in our analytical calculations.

3 Analytical expressions for adsorption
kinetics

In this section we will combine the above introduced trans-
port equations and spreading models to arrive at analyti-
cal equations for the adsorption kinetics of macro-
molecules.

3.1 Adsorption at immobile interfaces

One of the most common interfaces for the adsorption of
polymers is a solid–liquid one. In this case no convective
polymer transport along the interface can occur. We will
discuss the adsorption in a stagnation-point flow on such
an immobile interface. If we assume that the attachment of
polymer to the interface is fast as compared to the trans-
port, then the adsorption rate is equal to the polymer flux
J . So for the total adsorbed amount we write

dΓ

dt
= J = J0

cb − c0

cb
. (3.1)

The limiting flux J0 is given by equation (2.10), where
we take c0 = 0. Because the calculation of c0 requires a
non-trivial molecular model for the adsorption process, we
will introduce a rather simplified model for the adsorption
rate. We assume that the adsorption rate is proportional
to the free surface area and the limiting polymer flux,
giving

dΓ

dt
= J0β, (3.2)

where the relative free surface area is denoted as β = 1−θ.
We realize that, using this assumption, we underestimate
the adsorption rate, but it is a convenient first-order ap-
proximation which still allows us to predict the correct
trends.

To take surface processes of the polymer into account,
we will apply the two discussed spreading models to derive
equations for the adsorbed amount.

3.1.1 Growing disk

When using the growing disk model it is most convenient
the derive an equation for the relative free surface area β,
which can be used to solve equation (3.2). An amount dΓ

adsorbed during a time interval dt′ will occupy a fraction
dθ of the surface at time t given by

dθ = J0β(t′)s(t− t′)dt′. (3.3)

The occupied area s(t− t′) is taken from equation (2.18).
Before continuing it is convenient to non-dimensionalize
all variables by the following rescaling:

J0scτs → J, Γsc → Γ, ss/sc → σ, t/τs → t. (3.4)

We obtain the relative free surface area by assuming an
empty surface at t = 0, and calculating the fraction of
occupied surface by integrating equation (3.3). We then
arrive at

β(t) = 1− J

∫ t

0

dt′ β(t′)
(

1 + (σ − 1)
(

1− et
′−t
))

.

(3.5)

This integral equation can be transformed to a differential
equation by differentiating twice. After some rewriting we
arrive at

d2β

dt
+ (1 + J)

dβ

dt
+ Jσβ = 0. (3.6)

The solution of this linear, homogeneous differential equa-
tion is easily derived. Appendix A.1 shows how it is done.
The relevant boundary conditions of this equation are al-
ready contained in equation (3.5), they are

β(0) = 1,
dβ

dt

∣∣∣∣
t=0

= −J. (3.7)

Equation (3.6) has three different solutions, depending
on the roots of its characteristic equation. The discrimi-
nant of this equation is given by D = (1 +J)2− 4Jσ. The
relative free surface area is calculated from equation (A.2)
by insertion of the boundary conditions. This leads to:

for D > 0

β = −
1− J −

√
D

2
√
D

e−
1+J+

√
D

2 t

+
1− J +

√
D

2
√
D

e−
1+J−

√
D

2 t, (3.8a)

for D = 0

β =

(
1 +

1− J

2
t

)
e−

1+J
2 t, (3.8b)

for D < 0

β =

(
cos

√
−D

2
t+

1− J
√
−D

sin

√
−D

2
t

)
e−

1+J
2 t. (3.8c)
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By noting that
√
−D = i

√
D, cosx = cosh ix, and sinx =

−i sinh ix, it is easily seen that equation (3.8a) is equiva-
lent to equation (3.8c). The adsorbed amount is now calcu-
lated by substitution of the previously obtained constants
in equation (A.3):

for D > 0

Γ

J
=

1

Jσ
+

1− J −
√
D

(1 + J +
√
D)
√
D

e−
1+J+

√
D

2 t

−
1− J +

√
D

(1 + J −
√
D)
√
D

e−
1+J−

√
D

2 t, (3.9a)

for D = 0

Γ

J
=

1

Jσ
−

4 + (1− J2)t

(1 + J)2
e−

1+J
2 t, (3.9b)

for D < 0

Γ

J
=

1

Jσ

[
1−

(
cos

√
−D

2
t

+
1− J2 +D

2
√
−D

sin

√
−D

2
t

)
e−

1+J
2 t

]
. (3.9c)

3.1.2 One-step model

Instead of finding an equation for the relative free sur-
face area, it is also possible to obtain a set of differential
equations directly, where we assume that a polymer can
be present at the interface in two different states. We can
then treat the adsorbed amount of the polymer in the
different states separately. To this end, equation (3.2) is
replaced by

dΓc

dt
= J0(1− Γcsc − Γsss)− kfΓc + kbΓs, (3.10a)

dΓs

dt
= kfΓc − kbΓs, (3.10b)

where the subscripts “c” and “s” refer to the coiled and
spread states, respectively. The reaction constants for the
forward (spreading) and backward (coiling) reaction are
denoted by kf and kb. Again, we non-dimensionalize the
equations by the rescaling

J0sc

kf
→ J, Γisc → Γi,

ss

sc
→ σ,

kb

kf
→ κ, tkf → t.

(3.11)

We write equation (3.10) in a dimensionless Einstein ma-
trix notation

Γ̇j = AjkΓk + Jj (3.12)

with the boundary condition Γj(0) = 0. Appendix A.2
gives the general solutions of a set of m linear, nonhomo-
geneous first order differential equations. Our interest is
in m = 2, for which the adsorbed amounts for the two
states are given by

Γc =
κ

κ+ σ
− J

1 + J − κ+
√
D

√
D(1 + J + κ+

√
D)

e−
1+J+κ+

√
D

2 t

+ J
1 + J − κ−

√
D

√
D(1 + J + κ−

√
D)

e−
1+J+κ−

√
D

2 t, (3.13a)

Γs =
1

κ+ σ
+

2J
√
D(1 + J + κ+

√
D)

e−
1+J+κ+

√
D

2 t

−
2J

√
D(1 + J + κ−

√
D)

e−
1+J+κ−

√
D

2 t, (3.13b)

where

D = (1 + J + κ)2 − 4J(κ+ σ). (3.14)

These equations are valid only if D 6= 0, i.e., the eigenval-
ues of Ajk are distinct. We will not give the equations for
D = 0 here, because they are only limits of the general
solution, and are therefore physically of little use. Finally,
the surface coverage θ is easily calculated by substitution
of equation (3.13) in θ = Γc + σΓs.

Comparing the equation for the total adsorbed amount
Γ = Γc + Γs with equation (3.9a) for the “growing disk”
model, one observes that they are identical if we take
κ = 0. This is what we expected, because the exponen-
tial function taken for the “growing disk” model is just
the result of first order reaction kinetics without reverse
reaction (kb = 0).

3.2 Adsorption at expanding interfaces

Adsorption of polymers, and especially proteins, at ex-
panding liquid–gas interfaces is of interest in, e.g., foam-
ing processes. Again, we assume the adsorption rate to
be proportional to the free surface area, but we also have
to take into account the transport of polymer along the
interface. Hence, the continuity equation reads

dΓ

dt
= −ϑΓ + J0β, (3.15)

where it should be noted that the polymer flux J0 is a func-
tion of the expansion rate of the interface (see Eq. (2.16)).
Unfortunately, it is in this case not possible to derive a
simple equation for the free surface area β, because a poly-
mer adsorbing at t′ will be at another location at the inter-
face at time t. Calculation of the occupied area therefore
requires an Eulerian approach. So, in this case it is more
convenient to use the one-step model.
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3.2.1 One-step model

If we assume that a polymer is in a coiled state in solution,
and can be in either a coiled or a spread state at the
interface, we can rewrite equation (3.15) for the adsorbed
amounts of the two states as

dΓc

dt
= J0(1− Γcsc − Γsss)− kfΓc + kbΓs − ϑΓc,

(3.16a)

dΓs

dt
= kfΓc − kbΓs − ϑΓs. (3.16b)

We use the same rescaling as in equation (3.11) with the
addition of ϑ/kf → ϑ. We use the same Einstein matrix
notation as in the immobile interface case:

Γ̇j = AjkΓk + Jj (3.17)

with the boundary condition Γj(0) = 0. The solution can
thus be taken from appendix A.2. The adsorbed amounts
for the two states are given by

Γc =
J(κ+ ϑ)

J(κ+ σ) + ϑ(1 + J + κ+ ϑ)

− J
1 + J − κ+

√
D

√
D(1 + J + κ+ 2ϑ+

√
D)

e−
1+J+κ+2ϑ+

√
D

2 t

+ J
1 + J − κ−

√
D

√
D(1 + J + κ+ 2ϑ−

√
D)

e−
1+J+κ+2ϑ−

√
D

2 t, (3.18a)

Γs =
J

J(κ+ σ) + ϑ(1 + J + κ+ ϑ)

+
2J

√
D(1 + J + κ+ 2ϑ+

√
D)

e−
1+J+κ+2ϑ+

√
D

2 t

−
2J

√
D(1 + J + κ+ 2ϑ−

√
D)

e−
1+J+κ+2ϑ−

√
D

2 t, (3.18b)

where

D = (1 + J + κ)2 − 4J(κ+ σ). (3.19)

As is the case for adsorption at immobile interfaces, these
equations are also valid only if D 6= 0, i.e., the eigenvalues
ofAjk have to be distinct. At this point it is also important

to note that the fact that J ∝ cpϑ1/2 (see Eq. (2.16)) limits
the possibility of varying ϑ and J independently.

4 Discussion and conclusion

In this section we will give some sample calculations with
the presented models and discuss the validity of the mod-
els. We will especially focus on the restrictions of the
models.

0

0.5

1

0 2 4 6 8

Γ

J t

J=10

1

0.1

Fig. 6. Dimensionless adsorbed amount Γ (Jt) of a spread-
ing polymer at an immobile interface as calculated by equa-
tion (3.9) or (3.13) with σ = 2, and κ = 0. The polymer flux
J is indicated in the plot.

4.1 Immobile interface

The adsorption of a spreading polymer at a solid–liquid
interface is determined by two competing processes: the
transport to the surface and the spreading. As an exam-
ple we take the occupied area of a completely unfolded
molecule to be twice that of a coiled polymer, i.e., σ =
2. Figure 6 shows the time dependence of the total ad-
sorbed amount as calculated with the one-step model (see
Eq. (3.13)) for κ = 0 at different limiting polymer fluxes.
The same plot is obtained by equation (3.9) for the grow-
ing disk model. The adsorbed amount Γ is plotted against
Jt to obtain an initial slope of unity in all cases. It is easy
to show that there is a threshold for J beyond which the
calculated adsorbed amount has a maximum value at a
finite time tmax. The desorption observed after this time
is of a non-physical nature, because we allow polymers
to spread on a fully occupied surface. Therefore, a nega-
tive free surface area β occurs, which can eventually even
lead to a negative adsorbed amount of the coiled polymer
as can be seen in Figure 7, where we plot the adsorbed
amounts for each of the different states of the polymer,
with κ = 0, σ = 2, and J = 1. This observation indicates
that the equations used are only valid until tmax where
β = 0 for the first time. The time tmax where this maxi-
mum is reached is calculated from θ = Γc + σΓs = 1:

tmax =



1
√
D

ln
1− J + κ−

√
D

1− J + κ+
√
D

for J > κ+ 2σ − 1,

1
√
D

(
ln

1− J + κ−
√
D

1− J + κ+
√
D

+ 2πi

)
for J < κ+ 2σ − 1 ∧D < 0,

∞ in other cases.

(4.1)

Substituting equation (4.1) in equation (3.13) gives
the maximum adsorbed amount for both the coiled and
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Fig. 7. Adsorbed amount of the coiled (c) and spread (s) state
of a polymer at an immobile surface with σ = 2 and J = 1. The
total adsorbed amount (t) is also plotted. Solid lines: κ = 0;
dashed lines: κ = 0.5.
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Fig. 8. Adsorbed amount at tmax of a spreading polymer at an
immobile interface, for σ = 2. Curves are shown for the coiled
state (c), the spread state (s), and the total (t). Solid lines:
κ = 0; dashed lines: κ = 0.5.

the spread state. Figure 8 gives two examples of these
maximum adsorbed amounts as a function of J . It is ob-
vious that by taking κ > 0, the final adsorbed amount
of the coiled state will be larger, and therefore the occu-
pied area smaller. This leads to an increase of the total
adsorbed amount, as is seen in this figure.

From Figure 8 it is clear that the transport rate can be
used to control the final mass and structure of an adsorbed
polymer layer. One should however bear in mind that the
experimental window may be well outside the interesting
region, i.e., 0 . ln(J) . 4. This can for instance be the
case for the adsorption of flexible polymers, because then
the spreading process will be too fast.

4.2 Expanding interface

The only significant difference in the case that the in-
terface is mobile, is that forced transport of adsorbed
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Fig. 9. Adsorbed amount in a stationary state for a polymer
adsorbing at an expanding interface as a function of the surface
expansion rate ϑ and the limiting polymer transport J . Upper
graph: irreversible spreading (κ = 0) with σ = 2. Lower graph:
reversible spreading (κ = 1) with σ = 4.

molecules along the interface will now occur. One of the
consequences of this difference is that the overshoot of the
surface coverage θ observed in the calculations for the im-
mobile interface, is only present for small values of ϑ, and
is relatively small, i.e., 1− θ� 1. The adsorption of poly-
mers and proteins at a liquid–air interface is often studied
in a stationary state, such as obtained with the overflow-
ing cylinder. Therefore, we will only discuss the maximum
adsorbed amounts, which are independent of the bound-
ary conditions of equation (3.17) as long as we neglect the
possible overshoot mentioned above.

These maximum adsorbed amounts are easily calcu-
lated by setting Γ̇j = 0 in equation (3.17) or by taking
t→∞ in equation (3.18), and are thus given by the first
terms in equations (3.18a, 3.18b), respectively. The total
adsorbed amount in the stationary state is thus found to
be

Γss =
J(1 + κ+ ϑ)

J(κ+ σ) + ϑ(1 + J + κ+ ϑ)
· (4.2)
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Figure 9 shows two examples of Γss as a function of J and
ϑ. Clearly, in an overflowing cylinder setup it is possible
to control the amount of polymer adsorbed by changing
either J (e.g., by way of changing the polymer concentra-
tion) or ϑ.

4.3 Final remarks

We have shown that with a straight forward analytical ap-
proach we are able to describe the adsorption and spread-
ing of chain molecules. In a previous paper it was shown
that the presented model is indeed capable of, at least
qualitatively, describing the adsorption of the protein sav-
inase on silica [5]. The use of intrinsically simple spreading
models is justified by molecular dynamics simulations of
poly(ethylene oxide) near a graphite surface. The major
limitations of our model are the fact that we underesti-
mate the polymer flux towards the surface by assuming a
linear dependence of this flux with the free surface area
(see Eqs. (3.2) and (3.15)), and the fact that the spreading
itself is independent of the surface coverage. This implies
that the presented models should be used with care, and
are bound to give qualitative, rather than exact quantita-
tive, agreement with experiments.
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Chemical Research (SON) with financial aid from the Nether-
lands Organisation for Scientific Research (NWO). This re-
search is also sponsored by the EC Human and Capital Mobil-
ity programme CHRX-CT94-0448-3.

Appendix A: Differential equations in
adsorption kinetics

The analysis of the adsorption kinetics of polymers in-
volves the solution of differential equations. Here, we will
give a general approach in solving such equations for two
kind of spreading models for the polymer at the interface.

A.1 Growing disk

If we assume that an adsorbing polymer will change its
conformation at the interface by some simple exponential
function, the relative free surface area β will be given by a
linear, homogeneous second-order differential equation of
the following form:

d2β

dt2
+ b

dβ

dt
+ cβ = 0. (A.1)

Let m1 and m2 be the roots of the characteristic equation
m2 + bm + c = 0, and let D = b2 − 4c. Then there are
three cases:

β = c1em1t + c2em2t for D > 0, (A.2a)

β = c1em1t + c2te
m1t for D = 0, (A.2b)

β = (c1 cos qt+ c2 sin qt)ept for D < 0, (A.2c)

where p = −b/2 and q =
√

4c− b2/2. The calculation
of the adsorbed amount Γ involves the solution of the
linear, first-order differential equation dΓ/dt = Jβ (see
Eq. (3.2)). The adsorbed amount is simply given by Γ =

J
∫ t

0
dt′ β, where we assumed Γ (0) = 0, so:

for D > 0

Γ

J
=

c1

m1
em1t +

c2

m2
em2t −

c1

m1
−

c2

m2
, (A.3a)

for D = 0

Γ

J
=
c1m1 − c2 + c2m1t

m2
1

em1t −
c1m1 − c2

m2
1

, (A.3b)

for D < 0

Γ

J
=
c1p− c2q

p2 + q2
(ept cos qt− 1) +

c1q + c2p

p2 + q2
ept sin qt,

(A.3c)

where the constants are the same as in equation (A.2).

A.2 n-Step model

The adsorption of polymers, but of course also of other
molecules, can be addressed by assuming that the molecule
can exist in n+ 1 different states, either in solution or at
the interface. It is then possible to use first order reaction
kinetics to describe the adsorption process. The differen-
tial equations for the adsorbed amounts of the different
states take the following general form:

Γ̇j = AjkΓk + Jj . (A.4)

We denote the eigenvalues and eigenvectors of the m ×
m matrix Ajk by λj and vjk, respectively. In the case
all eigenvalues are distinct, solution of the homogeneous
equation Γ̇ h

j = AjkΓ
h
k gives

Γ h
jk = vjkeλjt, (A.5)

arriving at the general solution Γ h
j = CkΓ

h
kj , where Ck is

a constant vector. To find a particular solution we apply
the technique of variation of constants, i.e., we put

Γ p
j = Bk(t)Γ h

kj , (A.6)

after which it is easy to show that

ḂkΓ
h
kj = Jj . (A.7)

Taking a single exponential function for Bj meets the set

requirements. We take Bj =
bj
λj

e−λjt. The full solution of

equation (A.4) then is

Γj = Γ h
j + Γ p

j

= (Ck +Bk)Γ h
kj .

(A.8)
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Using the boundary condition Γj(0) = Γ 0
j and equa-

tion (A.7) we are able to calculate the introduced con-
stants bj and cj . In the case we have a set of two dif-
ferential equations, as is the case throughout this paper,
then

b1 =
j1v22 − j2v21

v12v21 − v11v22
, (A.9a)

b2 =
j2v11 − j1v12

v12v21 − v11v22
, (A.9b)

c1 = −
b1

λ1
−
Γ 0

1 v22 − Γ 0
2 v21

v12v21 − v11v22
, (A.9c)

c2 = −
b2

λ2
−
Γ 0

2 v11 − Γ 0
1 v12

v12v21 − v11v22
, (A.9d)

where λ1 6= λ2.

References

1. G.J. Fleer, M.A. Cohen Stuart, J.M.H.M. Scheutjens,
T. Cosgrove, B. Vincent, Polymers at interfaces (Chap-
man & Hall, London, 1993).

2. E. Pefferkorn, A. Elaissari, J. Colloid Interface Sci. 138,
187–194 (1990).

3. A. Elaissari, E. Pefferkorn, J. Colloid Interface Sci. 143,
85–91 (1991).

4. H.M. Schneider, P. Frantz, S. Granick, Langmuir 12, 994–
996 (1996).

5. M.C.P. van Eijk, M.A. Cohen Stuart, Langmuir 13, 5447–
5450 (1997).

6. J. Buijs, P.A.W. van den Berg, J.W.Th. Lichtenbelt,
W. Norde, J. Lyklema, J. Colloid Interface Sci. 178, 594–
605 (1996).

7. J.C. Dijt, M.A. Cohen Stuart, G.J. Fleer, Macromolecules
27, 3219–3228 (1994).

8. A.N. Semenov, J.-F. Joanny, J. Phys. II France 5, 859–876
(1995).
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